Targeting EGFR Induced Oxidative Stress by PARP1 Inhibition in Glioblastoma Therapy
نویسندگان
چکیده
Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.
منابع مشابه
Assessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملCisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high do...
متن کاملOrthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition
We identified a synthetic lethality between PLK1 silencing and the expression of an oncogenic Epidermal Growth Factor Receptor, EGFRvIII. PLK1 promoted homologous recombination (HR), mitigating EGFRvIII induced oncogenic stress resulting from DNA damage accumulation. Accordingly, PLK1 inhibition enhanced the cytotoxic effects of the DNA damaging agent, temozolomide (TMZ). This effect was signif...
متن کاملRegulation of Mitochondrial Poly(ADP-Ribose) Polymerase Activation by the b-Adrenoceptor/cAMP/Protein Kinase A Axis during Oxidative Stress
We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial...
متن کاملRegulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress.
We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial...
متن کامل